Страница:
<< 34 35 36 37
38 39 40 >> [Всего задач: 1703]
|
|
Сложность: 3 Классы: 7,8,9,10
|
Дано 27 кубиков одинакового размера: 9 красных, 9 синих и 9 белых. Можно ли
сложить из них куб таким образом, чтобы каждый столбик из трёх кубиков содержал
кубики ровно двух цветов? (Рассматриваются столбики, параллельные всем ребрам
куба, всего 27 столбиков.)
|
|
Сложность: 3 Классы: 6,7,8
|
Найдите 10 различных натуральных чисел, обладающих тем свойством, что их сумма
делится на каждое из них.
|
|
Сложность: 3 Классы: 7,8,9
|
В клетках доски n×n произвольно расставлены числа от 1 до n². Докажите, что найдутся две такие соседние клетки (имеющие общую вершину или общую сторону), что стоящие в них числа отличаются не меньше чем на n + 1.
|
|
Сложность: 3 Классы: 7,8,9
|
Имеется n целых чисел (n > 1). Известно, что каждое из них отличается от произведения всех остальных на число, кратное n.
Докажите, что сумма квадратов этих чисел делится на n.
|
|
Сложность: 3 Классы: 7,8,9
|
Докажите, что произведение 99 дробей
где k = 2, 3, ..., 100, больше ⅔.
Страница:
<< 34 35 36 37
38 39 40 >> [Всего задач: 1703]