ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Турниры:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 1703]      



Задача 108607

Темы:   [ Перегруппировка площадей ]
[ Шестиугольники ]
Сложность: 3
Классы: 8,9

В выпуклом шестиугольнике ABCDEF отрезки AB и CF, CD и BE, EF и AD попарно параллельны.
Докажите, что площади треугольников ACE и BFD равны.

Прислать комментарий     Решение

Задача 108610

Темы:   [ Вспомогательная окружность ]
[ ГМТ и вписанный угол ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 3
Классы: 8,9

В четырёхугольнике ABCD длины сторон AB и BC равны 1, ∠B = 100°, ∠D = 130°. Найдите BD.

Прислать комментарий     Решение

Задача 108611

Темы:   [ Неравенства для элементов треугольника. ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 8,9

Пусть a, b, c – длины сторон BC, AC, AB треугольника ABC,  γ = ∠C.  Докажите, что  c ≥ (a + b) sin γ/2.

Прислать комментарий     Решение

Задача 108612

Темы:   [ Перегруппировка площадей ]
[ Концентрические окружности ]
Сложность: 3
Классы: 8,9

Учитель продиктовал классу задание, которое каждый ученик выполнил в своей тетради. Вот это задание:

  Нарисуйте две концентрические окружности радиусов 1 и 10. К малой окружности проведите три касательные так, чтобы их точки пересечения A, B и C лежали внутри большой окружности. Измерьте площадь S треугольника ABC и площади SA, SB и SC трёх образовавшихся криволинейных треугольников с вершинами в точках A, B и C. Найдите  SA + SB + SC – S.

Докажите, что у всех учеников (если они правильно выполнили задание) получились одинаковые результаты.

Прислать комментарий     Решение

Задача 108613

Темы:   [ Диаметр, основные свойства ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9

Квадрат ABCD и окружность пересекаются в восьми точках так, что образуются четыре криволинейных треугольника:  AEF, BGH, CIJ, DKL  (EF, GH, IJ, KL – дуги окружности). Докажите, что
  а) сумма длин дуг EF и IJ равна сумме длин дуг GH и KL;
  б) сумма периметров криволинейных треугольников AEF и CIJ равна сумме периметров криволинейных треугольников BGH и DKL.

Прислать комментарий     Решение

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 1703]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .