Страница:
<< 49 50 51 52
53 54 55 >> [Всего задач: 1703]
Даны две окружности, лежащие одна вне другой. Пусть A1 и A2 – наиболее удалённые друг от друга точки пересечения этих окружностей с их линией центров, так что A1 лежит на первой окружности, а A2 – на второй. Из точки A1 проведены два луча, касающиеся второй окружности, и построен круг K1, касающийся этих лучей и первой окружности изнутри.
Из точки A2 проведены два луча, касающиеся первой окружности,
и построен круг K2, касающийся этих лучей и второй окружности изнутри. Докажите, что круги K1 и K2 равны.
Каждая из трёх окружностей радиусов соответственно 1, r и r извне касается двух других.
При каких значениях r существует треугольник, описанный около этих окружностей?
В описанном пятиугольнике ABCDE диагонали AD и CE пересекаются в центре O вписанной окружности.
Докажите, что отрезок BO и сторона DE перпендикулярны.
Внутри угла расположены две окружности с центрами A и B. Они касаются друг друга и двух сторон угла.
Докажите, что окружность с диаметром AB касается сторон угла.
В трапеции ABCD (AD – основание) диагональ AC равна сумме оснований, а угол между диагоналями равен 60°.
Докажите, что трапеция равнобедренная.
Страница:
<< 49 50 51 52
53 54 55 >> [Всего задач: 1703]