Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 1703]
|
|
Сложность: 3- Классы: 8,9,10,11
|
На гипотенузе AB прямоугольного треугольника ABC взяты такие точки M и N, что BC = BM и AC = AN. Докажите, что ∠MCN = 45°.
|
|
Сложность: 3- Классы: 6,7,8
|
У кассира было 30 монет: 10, 15 и 20 копеек на сумму 5 рублей. Докажите, что 20-копеечных монет у него было больше, чем 10-копеечных.
|
|
Сложность: 3- Классы: 6,7,8
|
Существует ли такое число n , что числа
а) n – 96, n, n + 96;
б) n – 1996, n, n + 1996
простые? (Все простые числа считаем положительными.)
Девять цифр: 1, 2, 3, ..., 9 выписаны в некотором порядке (так что
получилось девятизначное число). Рассмотрим все тройки цифр, идущих подряд, и
найдём сумму соответствующих семи трёхзначных чисел. Каково наибольшее возможное значение этой суммы?
При каких целых значениях n правильный треугольник со стороной n можно замостить плитками, имеющими форму равнобочной трапеции со сторонами 1, 1, 1, 2?
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 1703]