Страница: 1 [Всего задач: 5]
Задача
98537
(#1)
|
|
Сложность: 3 Классы: 9,10,11
|
Высотой пятиугольника назовём отрезок перпендикуляра, опущенного из вершины на противоположную сторону, а медианой – отрезок, соединяющий вершину с серединой противоположной стороны. Известно, что в некотором пятиугольнике равны десять длин – длины всех высот и всех медиан. Докажите, что этот пятиугольник – правильный.
Задача
98538
(#2)
|
|
Сложность: 3+ Классы: 9,10,11
|
Существуют 1000 последовательных натуральных чисел, среди которых нет ни одного простого числа (например, 1001! + 2, 1001! + 3, ...,
1001! + 1001).
А существуют ли 1000 последовательных натуральных чисел, среди которых ровно пять простых чисел?
Задача
98535
(#3)
|
|
Сложность: 4- Классы: 8,9,10,11
|
По прямой в одном направлении на некотором расстоянии друг от друга движутся пять одинаковых шариков, а навстречу им движутся пять других таких же шариков. Скорости всех шариков одинаковы. При столкновении любых двух шариков они разлетаются в противоположные стороны с той же скоростью, с какой двигались до столкновения. Сколько всего столкновений произойдёт между шариками?
Задача
98540
(#4)
|
|
Сложность: 3+ Классы: 9,10,11
|
На квадратном торте расположены треугольные шоколадки, которые не соприкасаются между собой. Всегда ли можно разрезать торт на выпуклые многоугольники так, чтобы каждый многоугольник содержал ровно одну шоколадку? (Торт считайте плоским квадратом.)
Задача
98541
(#5)
|
|
Сложность: 3+ Классы: 9,10,11
|
На полях A, B и C в левом нижнем углу шахматной доски стоят белые ладьи (см. рис.). Разрешается делать ходы по обычным правилам, однако после любого хода каждая ладья должна быть под защитой какой-нибудь другой ладьи. Можно ли за несколько ходов переставить ладьи так, чтобы каждая попала на обозначенное той же буквой поле в правом верхнем углу?
Страница: 1 [Всего задач: 5]