ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 109673  (#98.5.10.6)

Темы:   [ Процессы и операции ]
[ Подсчет двумя способами ]
Сложность: 4
Классы: 7,8,9,10

На множестве действительных чисел задана операция * , которая каждым двум числам a и b ставит в соответствие число a*b . Известно, что равенство (a*b)*c=a+b+c выполняется для любых трех чисел a , b и c . Докажите, что a*b=a+b .
Прислать комментарий     Решение


Задача 109674  (#98.5.10.7)

Темы:   [ Эйлерова характеристика ]
[ Вписанные и описанные окружности ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Выпуклые многоугольники ]
Сложность: 6
Классы: 10,11

Автор: Мусин О.

Дан выпуклый n -угольник ( n>3 ), никакие четыре вершины которого не лежат на одной окружности. Окружность, проходящую через три вершины многоугольника и содержащую внутри себя остальные его вершины, назовем описанной. Описанную окружность назовем граничной, если она проходит через три последовательные (соседние) вершины многоугольника; описанную окружность назовем внутренней, если она проходит через три вершины, никакие две из которых не являются соседними вершинами многоугольника. Докажите, что граничных описанных окружностей на две больше, чем внутренних.
Прислать комментарий     Решение


Задача 109675  (#98.5.10.8)

Темы:   [ Числовые таблицы и их свойства ]
[ Индукция (прочее) ]
[ Симметрия и инволютивные преобразования ]
Сложность: 5
Классы: 10,11

Автор: Любшин Д.

В каждую клетку квадратной таблицы размера  (2n – 1)×(2n – 1)  ставится одно из чисел 1 или – 1. Расстановку чисел назовём удачной, если каждое число равно произведению всех соседних с ним (соседними считаются числа, стоящие в клетках с общей стороной). Найдите число удачных расстановок.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .