Страница:
<< 1 2 3 4 5 [Всего задач: 24]
Задача
109819
(#05.5.11.5)
|
|
Сложность: 4+ Классы: 9,10,11
|
Существует ли ограниченная функция
f :
такая, что
f(1)
>0
и
f(
x)
удовлетворяет при всех
x,y неравенству
f2(x+y) f2(x)+2f(xy)+f2(y)?
Задача
109820
(#05.5.11.6)
|
|
Сложность: 5 Классы: 10,11
|
Можно ли расположить в пространстве 12 прямоугольных параллелепипедов
P1 ,
P2 ,
P12
,
ребра которых параллельны координатным осям
Ox ,
Oy ,
Oz так, чтобы
P2 пересекался (т.е. имел хотя бы одну общую точку)
с каждым из оставшихся, кроме
P1 и
P3 ,
P3 пересекался с каждым из оставшихся, кроме
P2 и
P4 , и т.д.,
P12
пересекался с каждым из оставшихся, кроме
P11
и
P1 ,
P1 пересекался с каждым из оставшихся, кроме
P12
и
P2 ?
(Поверхность параллелепипеда принадлежит ему.)
Задача
108227
(#05.5.11.7)
|
|
Сложность: 4 Классы: 9,10,11
|
Четырёхугольник ABCD с попарно непараллельными сторонами описан около окружности с центром O. Докажите, что точка O совпадает с точкой пересечения средних линий четырёхугольника ABCD тогда и только тогда, когда OA·OC = OB·OD.
Задача
109822
(#05.5.11.8)
|
|
Сложность: 6+ Классы: 8,9,10,11
|
За круглым столом сидят 100 представителей 25 стран, по 4 представителя от каждой.
Докажите, что их можно разбить на 4 группы таким образом, что в каждой группе будет по одному представителю от
каждой страны, и никакие двое из одной группы не сидят за столом рядом.
Страница:
<< 1 2 3 4 5 [Всего задач: 24]