Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 819]
|
|
Сложность: 3+ Классы: 8,9,10
|
Пусть AP и BQ – высоты данного остроугольного треугольника ABC. Постройте циркулем и линейкой на стороне AB точку M так, чтобы
∠AQM = ∠BPM.
|
|
Сложность: 3+ Классы: 9,10
|
В треугольнике ABC высота и медиана, проведённые из вершины A, образуют (вместе с прямой BC) треугольник, в котором биссектриса угла A является медианой, а высота и медиана, проведённые из вершины B, образуют (вместе с прямой AC) треугольник, в котором биссектриса угла B является биссектрисой. Найдите отношение сторон треугольника ABC.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Пусть ABCD – трапеция, в которой углы A и B прямые,
AB = AD, CD = BC + AD, BC < AD.
Докажите, что угол ADC в два раза больше угла ABE, где E – середина AD.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Есть два равных фанерных треугольника, один из углов которых равен α (эти углы отмечены). Расположите их на плоскости так, чтобы какие-то три вершины образовали угол, равный α/2. (Никакими инструментами, даже карандашом, пользоваться нельзя.)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Через вершины B и C треугольника ABC провели перпендикулярно прямой BC прямые b и c соответственно. Серединные перпендикуляры к сторонам AC и AB пересекают прямые b и c в точках P и Q соответственно. Докажите, что прямая PQ перпендикулярна медиане AM треугольника ABC.
Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 819]