Страница: 1
2 >> [Всего задач: 6]
|
|
Сложность: 3- Классы: 7,8,9
|
Верно ли, что к любому числу, равному произведению двух последовательных натуральных чисел, можно приписать в конце какие-то две цифры так, что получится квадрат натурального числа?
|
|
Сложность: 3- Классы: 7,8,9
|
В кинотеатре семь рядов по 10 мест каждый. Группа из 50 детей сходила на
утренний сеанс, а потом на вечерний.
Докажите, что найдутся двое детей, которые на утреннем сеансе сидели в одном ряду и на вечернем тоже сидели в одном ряду.
На сторонах AB и BC треугольника ABC выбраны точки K и M соответственно так, что KM || AC. Отрезки AM и KC пересекаются в точке O. Известно, что AK = AO и KM = MC. Докажите, что AM = KB.
|
|
Сложность: 4 Классы: 8,9,10
|
Турнир, в котором участвовало 20 спортсменов, судили 10 арбитров. Каждый сыграл с каждым один раз, и каждую встречу судил ровно один арбитр. После окончания каждой игры оба участника фотографировались с арбитром. Через год после турнира была найдена стопка из всех этих фотографий. Оказалось, что не про каждого можно определить, кем он является – спортсменом или арбитром. Сколько могло быть таких людей?
|
|
Сложность: 4- Классы: 6,7,8
|
Поставьте на плоскости 9 точек так, чтобы никакие 4 не лежали
на одной прямой, но из любых шести нашлись 3, лежащие на одной
прямой. (На рисунке проведите все прямые, на которых лежат по
три отмеченные точки.)
Страница: 1
2 >> [Всего задач: 6]