ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 115354  (#06.4.11.6)

Темы:   [ Неравенства с объемами ]
[ Объем тетраэдра и пирамиды ]
[ Объем тела равен сумме объемов его частей ]
[ Признаки и свойства параллелограмма ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 10,11

В основании четырёхугольной пирамиды SABCD лежит параллелограмм ABCD . Докажите, что для любой точки O внутри пирамиды сумма объёмов тетраэдров OSAB и OSCD равна сумме объёмов тетраэдров OSBC и OSDA .
Прислать комментарий     Решение


Задача 115355  (#06.4.11.7)

Темы:   [ Исследование квадратного трехчлена ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 8,9,10

Автор: Козлов П.

Целые числа a, b, c таковы, что значения квадратных трёхчленов  bx² + cx + a  и  cx² + ax + b  при  x = 1234  совпадают.
Может ли первый трёхчлен при  x = 1  принимать значение 2009?

Прислать комментарий     Решение

Задача 115356  (#06.4.11.8)

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Неравенство Коши ]
Сложность: 4+
Классы: 9,10,11

В клетки квадрата 100×100 расставили числа 1, 2, ..., 10000, каждое – по одному разу; при этом числа, различающиеся на 1, записаны в соседних по стороне клетках. После этого посчитали расстояния между центрами каждых двух клеток, числа в которых различаются ровно на 5000. Пусть S – минимальное из этих расстояний. Какое наибольшее значение может принимать S?

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .