Страница:
<< 1 2 3 4
5 >> [Всего задач: 24]
Задача
116584
(#9.6)
|
|
Сложность: 3 Классы: 8,9,10
|
Числа a и b таковы, что a³ – b³ = 2, a5 – b5 ≥ 4. Докажите, что a² + b² ≥ 2.
Задача
116592
(#10.6)
|
|
Сложность: 3+ Классы: 8,9,10
|
Петя выбрал натуральное число a > 1 и выписал на
доску пятнадцать чисел 1 + a, 1 + a², 1 + a³, ..., 1 + a15. Затем он стёр несколько чисел так, что каждые два оставшихся числа взаимно просты. Какое наибольшее количество чисел могло остаться на доске?
Задача
116600
(#11.6)
|
|
Сложность: 3- Классы: 8,9,10
|
В волейбольном турнире с участием 73 команд каждая команда сыграла с каждой по одному разу. В конце турнира все команды разделили на две непустые группы так,
что каждая команда первой группы одержала ровно n побед, а каждая команда второй группы – ровно m побед. Могло ли оказаться, что m ≠ n?
Задача
116585
(#9.7)
|
|
Сложность: 3+ Классы: 8,9,10
|
На стороне AC треугольника ABC отметили произвольную точку D. Точки E и F симметричны точке D относительно биссектрис углов A и C соответственно. Докажите, что середина отрезка EF лежит на прямой A0C0, где A0 и C0 – точки касания вписанной окружности треугольника ABC со сторонами BC и AB соответственно.
Задача
116586
(#10.7)
|
|
Сложность: 4 Классы: 8,9,10
|
Дан квадрат n×n. Изначально его клетки раскрашены в белый и чёрный цвета в шахматном порядке, причём хотя бы одна из угловых клеток чёрная. За один ход разрешается в некотором квадрате 2×2 одновременно перекрасить входящие в него четыре клетки по следующему правилу: каждую белую перекрасить в чёрный цвет, каждую чёрную – в зелёный, а каждую зелёную – в белый. При каких n за несколько ходов можно получить шахматную раскраску, в которой чёрный и белый цвета поменялись местами?
Страница:
<< 1 2 3 4
5 >> [Всего задач: 24]