Страница: 1
2 >> [Всего задач: 8]
Задача
116595
(#11.1)
|
|
Сложность: 2+ Классы: 8,9,10
|
Бесконечная возрастающая арифметическая прогрессия такова, что произведение
каждых двух различных её членов – также член этой прогрессии. Докажите, что все её члены – целые числа.
Задача
116596
(#11.2)
|
|
Сложность: 3 Классы: 8,9,10
|
Через вершины основания четырёхугольной пирамиды SABCD проведены прямые, параллельные противоположным боковым рёбрам (через вершину A – параллельно SC, и так далее). Эти четыре прямые пересеклись в одной точке. Докажите, что четырёхугольник ABCD – параллелограмм.
Задача
116597
(#11.3)
|
|
Сложность: 3+ Классы: 8,9,10
|
На плоскости нарисованы n > 2 различных векторов
a1, a2, ..., an с равными длинами. Оказалось, что все векторы –a1 + a2 + ... + an,
a1 – a2 + a3 + ... + an, a1 + a2 + ... + an–1 – an также имеют равные длины. Докажите, что a1 + a2 + ... + an = 0.
Задача
116598
(#11.4)
|
|
Сложность: 4 Классы: 8,9,10
|
Главная аудитория фирмы "Рога и копыта" представляет собой квадратный зал из восьми рядов по восемь мест. 64 сотрудника фирмы писали в этой аудитории тест, в котором было шесть вопросов с двумя вариантами ответа на каждый. Могло ли так оказаться, что среди наборов ответов сотрудников нет одинаковых, причем наборы ответов любых двух людей за соседними столами совпали не больше, чем в одном вопросе? (Столы называются соседними, если они стоят рядом в одном ряду или друг за другом в соседних рядах.)
Задача
116599
(#11.5)
|
|
Сложность: 2 Классы: 8,9,10
|
Докажите, что для любого натурального n выполнено неравенство (n – 1)n+1(n + 1)n–1 < n2n.
Страница: 1
2 >> [Всего задач: 8]