ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 >> [Всего задач: 12]      



Задача 64753

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
[ Средняя линия треугольника ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 4-

Отрезок AD – диаметр описанной окружности остроугольного треугольника ABC. Через точку H пересечения высот этого треугольника провели прямую, параллельную стороне BC, которая пересекает стороны AB и AC в точках E и F соответственно.
Докажите, что периметр треугольника DEF в два раза больше стороны BC.

Прислать комментарий     Решение

Задача 64756

Темы:   [ Правильная призма ]
[ Примеры и контрпримеры. Конструкции ]
[ Движение помогает решить задачу ]
Сложность: 4-

Можно ли правильную треугольную призму разрезать на две равные пирамиды?

Прислать комментарий     Решение

Задача 64757

Темы:   [ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Углы между биссектрисами ]
Сложность: 4-

Биссектрисы AA1 и CC1 треугольника ABC пересекаются в точке I. Описанные окружности треугольников AIC1 и CIA1 повторно пересекают дуги AC и BC (не содержащие точек B и A соответственно) описанной окружности треугольника ABC в точках C2 и A2 соответственно. Докажите, что прямые A1A2 и C1C2 пересекаются на описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 64754

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Доказательство от противного ]
Сложность: 4

Внутри равнобедренного прямоугольного треугольника ABC с гипотенузой AB взята такая точка M, что угол MAB на 15° больше угла MAC, а угол MCB на 15° больше угла MBC. Найдите угол BMC.

Прислать комментарий     Решение

Задача 64758

Темы:   [ Вписанные и описанные окружности ]
[ Прямая Эйлера и окружность девяти точек ]
[ Угол между касательной и хордой ]
[ Радикальная ось ]
[ Гомотетия помогает решить задачу ]
Сложность: 4

Медианы AA0, BB0 и CC0 остроугольного треугольника ABC пересекаются в точке M, а высоты AA1, BB1 и CC1 – в точке H. Касательная к описанной окружности треугольника A1B1C1 в точке C1 пересекает прямую A0B0 в точке C'. Точки A' и B' определяются аналогично. Докажите, что A', B' и C' лежат на одной прямой, перпендикулярной прямой MH.

Прислать комментарий     Решение

Страница: << 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .