Страница: 1
2 >> [Всего задач: 8]
Задача
65250
(#9.1)
|
|
Сложность: 3+ Классы: 9,10,11
|
Числа a и b таковы, что каждый из двух квадратных трёхчленов x² + ax + b и x² + bx + a имеет по два различных корня, а произведение этих трёхчленов имеет ровно три различных корня. Найдите все возможные значения суммы этих трёх корней.
Задача
65236
(#9.2)
|
|
Сложность: 4- Классы: 9,10,11
|
Параллелограмм ABCD таков, что ∠B < 90° и AB < BC. Точки E и F выбраны на описанной окружности ω треугольника ABC так, что касательные к ω в этих точках проходят через точку D. Оказалось, что ∠EDA = ∠FDC. Найдите угол ABC.
Задача
65237
(#9.3)
|
|
Сложность: 4- Классы: 9,10,11
|
Натуральные числа a, x и y, большие 100, таковы, что
y² – 1 = a²(x² – 1). Какое наименьшее значение может принимать дробь a/x?
Задача
65238
(#9.4)
|
|
Сложность: 4+ Классы: 9,10,11
|
В волейбольном турнире участвовали 110 команд, каждая сыграла с каждой из остальных ровно одну игру (в волейболе не бывает ничьих). Оказалось, что в любой группе из 55 команд найдётся одна, которая проиграла не более чем четырём из остальных 54 команд этой группы. Докажите, что во всём турнире найдётся команда, проигравшая не более чем четырём из остальных 109 команд.
Задача
65239
(#9.5)
|
|
Сложность: 3+ Классы: 9,10,11
|
По кругу записаны 100 целых чисел. Каждое из чисел больше суммы двух чисел, следующих за ним по часовой стрелке.
Какое наибольшее количество положительных чисел может быть среди записанных?
Страница: 1
2 >> [Всего задач: 8]