Страница: 1
2 3 4 5 >> [Всего задач: 24]
Задача
65250
(#9.1)
|
|
Сложность: 3+ Классы: 9,10,11
|
Числа a и b таковы, что каждый из двух квадратных трёхчленов x² + ax + b и x² + bx + a имеет по два различных корня, а произведение этих трёхчленов имеет ровно три различных корня. Найдите все возможные значения суммы этих трёх корней.
Задача
65242
(#10.1)
|
|
Сложность: 3+ Классы: 9,10,11
|
Назовём натуральное число почти квадратом, если оно равно произведению двух последовательных натуральных чисел.
Докажите, что каждый почти квадрат можно представить в виде частного двух почти квадратов.
Задача
65236
(#11.1)
|
|
Сложность: 4- Классы: 9,10,11
|
Параллелограмм ABCD таков, что ∠B < 90° и AB < BC. Точки E и F выбраны на описанной окружности ω треугольника ABC так, что касательные к ω в этих точках проходят через точку D. Оказалось, что ∠EDA = ∠FDC. Найдите угол ABC.
Задача
65236
(#9.2)
|
|
Сложность: 4- Классы: 9,10,11
|
Параллелограмм ABCD таков, что ∠B < 90° и AB < BC. Точки E и F выбраны на описанной окружности ω треугольника ABC так, что касательные к ω в этих точках проходят через точку D. Оказалось, что ∠EDA = ∠FDC. Найдите угол ABC.
Задача
65243
(#10.2)
|
|
Сложность: 4- Классы: 9,10,11
|
Дан параллелограмм ABCD, в котором AB < AC < BC.
Точки E и F выбраны на описанной окружности ω треугольника ABC так, что касательные к ω в этих точках проходят через точку D; при этом отрезки AD и CE пересекаются. Оказалось, что ∠ABF = ∠DCE. Найдите угол ABC.
Страница: 1
2 3 4 5 >> [Всего задач: 24]