ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 65247  (#10.6)

Темы:   [ Последовательности (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9,10,11

Существует ли такая бесконечная последовательность натуральных чисел, что для любого натурального k сумма любых k идущих подряд членов этой последовательности делится на  k + 1?

Прислать комментарий     Решение

Задача 65248  (#10.7)

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Вписанные и описанные окружности ]
[ Центральная симметрия помогает решить задачу ]
[ Конкуррентность высот. Углы между высотами. ]
[ Четыре точки, лежащие на одной окружности ]
[ Проективная геометрия (прочее) ]
Сложность: 4+
Классы: 9,10,11

Автор: Дидин М.

В остроугольном неравнобедренном треугольнике ABC проведены медиана AM и высота AH. На прямых AB и AC отмечены точки Q и P соответственно так, что  QMAC  и  PMAB.  Описанная окружность треугольника PMQ пересекает прямую BC вторично в точке X. Докажите, что  BH = CX.

Прислать комментарий     Решение

Задача 65249  (#10.8)

Темы:   [ Взвешивания ]
[ Примеры и контрпримеры. Конструкции ]
[ Оценка + пример ]
Сложность: 5-
Классы: 9,10,11

У нумизмата есть 100 одинаковых по внешнему виду монет. Он знает, что среди них 30 настоящих и 70 фальшивых монет. Кроме того, он знает, что массы всех настоящих монет одинаковы, а массы всех фальшивых – разные, причём каждая фальшивая монета тяжелее настоящей; однако точные массы монет неизвестны. Имеются двухчашечные весы без гирь, на которых можно за одно взвешивание сравнить массы двух групп, состоящих из одинакового числа монет. За какое наименьшее количество взвешиваний на этих весах нумизмат сможет гарантированно найти хотя бы одну настоящую монету?

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .