Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 48]
Задача
66238
(#11)
|
|
Сложность: 4- Классы: 9,10
|
Пусть H – ортоцентр остроугольного треугольника ABC. Серединный перпендикуляр к отрезку BH пересекает стороны BA, BC в точках A0, C0 соответственно. Докажите, что периметр треугольника A0OC0 (O – центр описанной окружности треугольника ABC) равен AC.
Задача
66239
(#12)
|
|
Сложность: 4 Классы: 9,10,11
|
Сколько (максимум) кругов можно расположить на плоскости так, чтобы каждые два из них пересекались, а никакие три – нет?
Задача
66240
(#13)
|
|
Сложность: 4- Классы: 9,10
|
В треугольнике ABC проведены высоты AH1, BH2 и CH3. Точка M – середина отрезка H2H3. Прямая AM пересекает отрезок H2H1 в точке K.
Докажите, что точка K принадлежит средней линии треугольника ABC, параллельной AC.
Задача
66241
(#14)
|
|
Сложность: 4+ Классы: 9,10,11
|
Дан неравнобедренный остроугольный треугольник ABC. Точки A1, A2 симметричны основаниям внутренней и внешней биссектрис угла A относительно середины стороны BC. На отрезке A1A2 как на диаметре построена окружность α. Аналогично определяются окружности β и γ. Докажите, что эти три окружности пересекаются в двух точках.
Задача
66242
(#15)
|
|
Сложность: 3+ Классы: 8,9
|
Длины сторон треугольника ABC не превышают 1.
Докажите, что p(1 – 2Rr) ≥ 1, где p – полупериметр, R и r – радиусы описанной и вписанной окружностей треугольника ABC.
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 48]