Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 48]
Задача
66233
(#6)
|
|
Сложность: 4- Классы: 9,10
|
В остроугольном треугольнике ABC AA', BB' и CC' – высоты. Точки Ca, Cb симметричны C' относительно AA' и BB'. Аналогично определены точки Ab, Ac, Bc, Ba. Докажите, что прямые AbBa, BcCb и CaAc параллельны.
Задача
66234
(#7)
|
|
Сложность: 4- Классы: 9,10
|
Высоты AA1, CC1 треугольника ABC пересекаются в точке H. HA – точка симметричная H относительно A. HAC1 пересекает прямую BC в точке C'; аналогично определяется точка A'. Докажите, что A'C' || AC.
Задача
66235
(#8)
|
|
Сложность: 4- Классы: 9,10
|
В равнобедренной трапеции ABCD с основаниями BC и AD диагонали AC и BD перпендикулярны. Из точки D опущен перпендикуляр DE на сторону AB, а из точки C – перпендикуляр CF на прямую DE. Докажите, что ∠DBF = ½ ∠FCD.
Задача
66236
(#9)
|
|
Сложность: 4 Классы: 9,10
|
Дан остроугольный треугольник ABC. Постройте на сторонах BC, CA, AB точки A', B', C' так, чтобы выполнялись следующие условия:
- A'B' || AB;
- C'C – биссектриса угла A'C'B';
- A'C' + B'C' = AB.
Задача
66237
(#10)
|
|
Сложность: 3+ Классы: 8,9,10
|
Диагонали выпуклого четырехугольника делят его на четыре подобных треугольника. Докажите, что в него можно вписать окружность.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 48]