Страница:
<< 4 5 6 7 8 9 10 [Всего задач: 50]
|
|
Сложность: 4 Классы: 10,11
|
Можно ли расположить в пространстве пять сфер так, чтобы для каждой из сфер можно было провести через ее центр касательную плоскость к остальным четырем сферам? Сферы могут пересекаться и не обязаны иметь одинаковый радиус.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Дано натуральное число $n > 1$. Что больше: количество способов разрезать клетчатый квадрат $3n \times 3n$ на клетчатые прямоугольники $1 \times 3$ или количество способов разрезать клетчатый квадрат $2n \times 2n$ на клетчатые прямоугольники $1 \times 2$?
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Город имеет вид квадрата $n\times n$, разбитого на кварталы 1×1. Улицы идут с севера на юг и с запада на восток. Человек каждый день утром идёт из юго-западного угла в северо-восточный, двигаясь только на север или восток, а вечером возвращается обратно, двигаясь только на юг или запад. Каждое утро он выбирает свой путь так, чтобы суммарная длина знакомых участков пути (тех, которые он уже проходил в том или ином направлении) была минимальна, и каждый вечер тоже. Докажите, что за $n$ дней он пройдёт все улицы целиком.
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Четырёхугольник $ABCD$ вписан в окружность. Лучи $BA$ и $CD$ пересекаются в точке $P$. Прямая, проходящая через $P$ и параллельная касательной к окружности в точке $D$, пересекает в точках $U$ и $V$ касательные, проведённые к окружности в точках $A$ и $B$. Докажите, что окружности, описанные около треугольника $CUV$ и четырёхугольника $ABCD$, касаются.
|
|
Сложность: 5- Классы: 8,9,10,11
|
Король решил поощрить группу из $n$ мудрецов. Их поставят в ряд друг за другом (чтобы все смотрели в одном направлении), на каждого наденут чёрную или белую шляпу. Каждый будет видеть шляпы всех впереди стоящих. Мудрецы по очереди (от последнего к первому) назовут цвет (белый или чёрный) и натуральное число по своему выбору. В конце подсчитывается число мудрецов, которые назвали цвет, совпадающий с цветом своей шляпы: ровно столько дней всей группе будут платить надбавку к жалованью. Мудрецам разрешили договориться заранее, как отвечать. При этом мудрецы знают, что ровно $k$ из них безумны (кто именно – им неизвестно). Безумный мудрец называет белый или чёрный цвет и число вне зависимости от договорённостей. Какое максимальное число дней с надбавкой к жалованью могут гарантировать группе мудрецы, независимо от местонахождения безумных в очереди?
Страница:
<< 4 5 6 7 8 9 10 [Всего задач: 50]