ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 67394

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Теория алгоритмов (прочее) ]
Сложность: 3
Классы: 6,7,8,9

На асфальте нарисована полоса $1\times10$ для игры в «классики». Из центра первого квадрата надо сделать 9 прыжков по центрам квадратов (иногда вперёд, иногда назад) так, чтобы побывать в каждом квадрате по одному разу и закончить маршрут в последнем квадрате. Аня и Варя обе прошли полосу, и каждый очередной прыжок Ани был на то же расстояние, что и очередной прыжок Вари. Обязательно ли они пропрыгали квадраты в одном и том же порядке?
Прислать комментарий     Решение


Задача 67395

Темы:   [ Трапеции (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9

Четырёхугольник $ABCD$ выпуклый, его стороны $AB$ и $CD$ параллельны. Известно, что углы $DAC$ и $ABD$ равны, а также углы $CAB$ и $DBC$ равны. Обязательно ли $ABCD$ – квадрат?
Прислать комментарий     Решение


Задача 67396

Тема:   [ Геометрия на клетчатой бумаге ]
Сложность: 3
Классы: 7,8,9,10

У восьми фермеров есть клетчатое поле $8\times 8$, огороженное по периметру забором и сплошь заросшее ягодами (в каждой точке поля, кроме точек забора, растёт ягода). Фермеры поделили поле между собой по линиям сетки на $8$ участков равной площади (каждый участок – многоугольник), но границы отмечать не стали. Каждый фермер следит только за ягодами внутри (не на границе) своего участка, а пропажу замечает, только если у него пропали хотя бы две ягоды. Всё это известно вороне, но где проходят границы между участками, она не знает. Может ли ворона утащить с поля $9$ ягод так, чтобы пропажу гарантированно ни один фермер не заметил?
Прислать комментарий     Решение


Задача 67397

Тема:   [ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8,9,10

По кругу записано несколько положительных целых чисел (не менее двух). Среди любых двух соседних чисел какое-то одно больше другого в $2$ раза или в $5$ раз. Может ли сумма всех этих чисел равняться $2023$?
Прислать комментарий     Решение


Задача 67398

Тема:   [ Симметричная стратегия ]
Сложность: 4
Классы: 8,9,10,11

Петя и Вася нашли $100$ кубиков одинакового размера, $50$ из них были белого цвета и $50$ – чёрного. Они придумали игру. Назовём башенкой один или несколько кубиков, стоящих друг на друге. В начале игры все кубики лежат по одному, то есть имеется $100$ башенок. За один ход игрок должен одну из башенок поставить на другую (переворачивать башенки нельзя), при этом в новой башенке не должно быть подряд двух одинаковых по цвету кубиков. Ходят по очереди, начинает Петя. Кто не может сделать ход – проиграл. Кто может обеспечить себе победу, как бы ни играл его соперник?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .