ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольной пирамиде ABCD рёбра AC и BD взаимно перпендикулярны, AB=BD=AD=a , середина ребра AC равноудалена от плоскостей ABD и BCD , угол между ребром AC и гранью CBD равен arcsin ![]() ![]() В тетраэдре ABCD известно, что AB = 3 , BC = 4 , AC = 5 , AD = DB = 2 , DC = 4 . Найдите медиану тетраэдра, проведённую из вершины D . ![]() ![]() ![]() В тетраэдре ABCD из вершины A опустили перпендикуляры AB' , AC' , AD' на плоскости, делящие двугранные углы при ребрах CD , BD , BC пополам. Докажите, что плоскость (B'C'D') параллельна плоскости (BCD) . ![]() ![]() |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 37]
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 37] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |