ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Четырёхугольная пирамида SABCD вписана в сферу. Из вершин A, B, C, D опущены перпендикуляры AA1, BB1, CC1, DD1 на прямые SC, SD, SA, SB соответственно. Оказалось, что точки S, A1, B1, C1, D1 различны и лежат на одной сфере. Докажите, что точки A1, B1, C1, D1 лежат в одной плоскости. ![]() |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 59]
На продолжении медианы AM треугольника ABC за точку M отложен отрезок MD, равный AM. Докажите, что четырёхугольник ABDC — параллелограмм.
В треугольнике ABC медиана AM продолжена за точку M на
расстояние, равное AM.
В треугольнике ABC медиана BD = AB
В треугольнике АВС медиана ВМ в два раза меньше стороны АВ и образует с ней угол 40°. Найдите угол АВС.
В равнобедренном треугольнике с боковой стороной, равной 4, проведена медиана к боковой стороне. Найдите основание треугольника, если медиана равна 3.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 59] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |