ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи


Кузнечик вначале сидит в точке M плоскости Oxy вне квадрата  0 ≤ x ≤ 1,  0 ≤ y ≤ 1  (координаты M – нецелые, расстояние от M до центра квадрата равно d). Кузнечик прыгает в точку, симметричную M относительно самой правой (с точки зрения кузнечика) вершины квадрата. Докажите, что за несколько таких прыжков кузнечик не сможет удалиться от центра квадрата более чем на 10d.

Вниз   Решение


На рёбрах AB , BC и BD пирамиды ABCD взяты точки K , L и M соответственно. Постройте прямую пересечения плоскостей CDK и MLA .

ВверхВниз   Решение


Из четырёх палочек сложен контур параллелограмма. Обязательно ли из них можно сложить контур треугольника (одна из сторон треугольника складывается из двух палочек)?

ВверхВниз   Решение


Сторона основания ABCD правильной пирамиды SABCD равна a , боковое ребро равно 2a . Рассматриваются отрезки с концами на диагонали BD основания и боковом ребре SC , параллельные плоскости SAD . 1) Один из этих отрезков проведён через точку M диагонали BD , для которой DM:DB = 1:3 . Найдите его длину. 2) Найдите наименьшую длину всех рассматриваемых отрезков.

ВверхВниз   Решение


На стороне AC треугольника ABC выбрана точка D, причём  DC = 2AD,  O – центр вписанной окружности треугольника DBC, E – точка касания этой окружности с прямой BD. Оказалось, что  BD = BC.  Докажите, что  AE || DO.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 62]      



Задача 57826

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Перенос помогает решить задачу ]
Сложность: 4+
Классы: 8,9

Найдите геометрическое место точек: а) сумма; б) разность расстояний от которых до двух данных прямых имеет данную величину.
Прислать комментарий     Решение


Задача 55523

Темы:   [ Ортоцентр и ортотреугольник ]
[ Перенос помогает решить задачу ]
[ Признаки и свойства параллелограмма ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательная окружность ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 5-
Классы: 8,9,10

Из вершины B параллелограмма ABCD проведены его высоты BK и BH. Известны отрезки KH = a и BD = b. Найдите расстояние от точки B до точки пересечения высот треугольника BKH.

Прислать комментарий     Решение


Задача 108981

Темы:   [ Элементарные (основные) построения циркулем и линейкой ]
[ Перенос помогает решить задачу ]
[ Параллельный перенос. Построения и геометрические места точек ]
[ Симметрия и построения ]
Сложность: 5
Классы: 8,9

Дан острый угол ABC . На стороне BC отложены отрезки BD= 4 см и BE= 14 см. Найти на стороне BA такие две точки M и N , чтобы MN=3 см и DMN= MNE .
Прислать комментарий     Решение


Задача 58104

Темы:   [ Принцип Дирихле (площадь и объем) ]
[ Перенос помогает решить задачу ]
[ Площадь круга, сектора и сегмента ]
Сложность: 6-
Классы: 8,9,10,11

Попарные расстояния между точками A1,..., An больше 2. Докажите, что любую фигуру, площадь которой меньше $ \pi$, можно сдвинуть на вектор длиной не более 1 так, что она не будет содержать точек A1,..., An.
Прислать комментарий     Решение


Задача 103733

Темы:   [ Системы точек ]
[ Правильный (равносторонний) треугольник ]
[ Перенос помогает решить задачу ]
Сложность: 3-
Классы: 5,6,7,8

Отметьте на плоскости 6 точек так, чтобы от каждой на расстоянии 1 находилось ровно три точки.

Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 62]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .