Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 418]
|
|
Сложность: 3 Классы: 8,9,10
|
Дан многочлен с целыми коэффициентами. Если в него вместо неизвестного подставить 2 или 3, то получаются числа, кратные 6.
Докажите, что если вместо неизвестного в него подставить 5, то также получится число, кратное 6.
|
|
Сложность: 3 Классы: 7,8,9,10
|
Эстафета длиной 2004 км состоит из нескольких этапов одинаковой длины, выражающейся целым числом километров. Участники команды города Энск бежали несколько дней, пробегая каждый этап ровно за один час. Сколько часов они бежали, если известно, что они уложились в неделю?
|
|
Сложность: 3 Классы: 6,7,8
|
На клетчатой доске размером 4×4 Петя закрашивает несколько клеток. Вася выиграет, если сможет накрыть все эти клетки не пересекающимися и не вылезающими за границу квадрата уголками из трёх клеток. Какое наименьшее количество клеток должен закрасить Петя, чтобы Вася не выиграл?
|
|
Сложность: 3 Классы: 6,7,8
|
Найдите наибольшее четырёхзначное число, которое делится на 7 и записывается четырьмя различными цифрами.
|
|
Сложность: 3 Классы: 8,9,10
|
Марья Петровна идет по дороге со скоростью 4 км/ч. Увидев пенёк, она садится на него и отдыхает одно и то же целое число минут. Михаил Потапович идёт по той же дороге со скоростью 5 км/ч, зато сидит на каждом пеньке в два раза дольше чем Марья Петровна. Вышли и пришли они одновременно. Длина дороги – 11 км. Сколько на ней могло быть пеньков?
Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 418]