Страница:
<< 110 111 112 113
114 115 116 >> [Всего задач: 2440]
|
|
Сложность: 3+ Классы: 6,7,8
|
В школе 450 учеников и 225 парт. Ровно половина девочек сидят за одной партой с мальчиками.
Можно ли пересадить учеников так, чтобы ровно половина мальчиков сидела за одной партой с девочками?
|
|
Сложность: 3+ Классы: 9,10,11
|
Пусть p – простое число. Сколько существует таких натуральных n, что pn делится на p + n?
|
|
Сложность: 3+ Классы: 10,11
|
Натуральные числа A и B делятся на все натуральные числа от 1 до 65. На какое наименьшее натуральное число может не делиться число A + B?
|
|
Сложность: 3+ Классы: 10,11
|
Решите в натуральных числах уравнение: x³ + y³ + 1 = 3xy.
На пяти карточках записаны натуральные числа от 1 до 5. Леша и Дима взяли себе, не глядя, по две карточки, а оставшуюся карточку, также не глядя, спрятали. Изучив свои карточки, Леша сказал Диме: "Я знаю, что сумма чисел на твоих карточках чётна!"; и был прав. Какие числа записаны на Лешиных карточках?
Страница:
<< 110 111 112 113
114 115 116 >> [Всего задач: 2440]