Страница:
<< 2 3 4 5 6 7 8 [Всего задач: 39]
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Верно ли, что при любом n правильный 2n-угольник является проекцией некоторого многогранника, имеющего не более, чем n + 2 грани?
|
|
Сложность: 6 Классы: 10,11
|
Верно ли, что для любых четырёх попарно скрещивающихся прямых можно
так выбрать по одной точке на каждой из них, чтобы эти точки были вершинами а)
трапеции, б) параллелограмма?
|
|
Сложность: 5- Классы: 10,11
|
Дан треугольник ABC и прямая l, пересекающая BC, CA и AB в точках A1, B1 и C1 соответственно. Точка A' – середина отрезка, соединяющего проекции A1 на AB и AC. Аналогично определяются точки B' и C'.
а) Докажите, что A', B' и C' лежат на некоторой прямой l'.
б) Докажите, что, если l проходит через центр описанной окружности треугольника ABC, то l' проходит через центр его окружности девяти точек.
|
|
Сложность: 5- Классы: 9,10,11
|
В пространстве даны 200 точек. Каждые две из них соединены отрезком, причём отрезки не пересекаются друг с другом. Первый игрок красит каждый отрезок в один из k цветов, затем второй игрок красит в один из тех же цветов каждую точку. Если найдутся две точки и отрезок между ними, окрашенные в один цвет, выигрывает первый игрок, в противном случае второй. Докажите, что первый может гарантировать себе выигрыш, если
а) k = 7; б) k = 10.
Страница:
<< 2 3 4 5 6 7 8 [Всего задач: 39]