ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 448]      



Задача 54915

Темы:   [ Площадь четырехугольника ]
[ Теорема косинусов ]
[ Описанные четырехугольники ]
[ Вписанные четырехугольники (прочее) ]
[ Четырехугольник: вычисления, метрические соотношения. ]
Сложность: 4+
Классы: 8,9

Стороны четырёхугольника равны a, b, c и d. Известно, что в этот четырёхугольник можно вписать окружность и около него можно описать окружность. Докажите, что его площадь равна $ \sqrt{abcd}$.

Прислать комментарий     Решение


Задача 53200

Темы:   [ Вспомогательная окружность ]
[ Теорема косинусов ]
[ Теорема синусов ]
Сложность: 4+
Классы: 8,9

В окружность радиуса R с центром в точке O вписана трапеция ABCD (BC < AD и точка O лежит внутри трапеции). Непараллельные стороны трапеции AB и CD равны R. Точка K — середина радиуса OA, точка L — середина радиуса OD, точка M — середина стороны BC. Отношение площади трапеции к площади треугольника KLM равно 4. Найдите MC.

Прислать комментарий     Решение


Задача 109880

Темы:   [ Длины сторон (неравенства) ]
[ Теорема косинусов ]
[ Покрытия ]
Сложность: 4+
Классы: 9,10,11

Длина наибольшей стороны треугольника равна 1. Докажите, что три круга радиуса с центрами в вершинах покрывают весь треугольник.
Прислать комментарий     Решение


Задача 53094

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Теорема косинусов ]
Сложность: 4+
Классы: 8,9

Около окружности описана равнобедренная трапеция с основаниями AD и BC (AD > BC). Прямая, параллельная диагонали AC, пересекает стороны AD и CD в точках M и N соответственно и касается окружности в точке P. Найдите углы трапеции, если $ {\frac{MP}{PN}}$ = k (k < 1).

Прислать комментарий     Решение


Задача 57315

Темы:   [ Неравенство треугольника (прочее) ]
[ Теорема косинусов ]
[ Неравенства для остроугольных треугольников ]
[ Алгебраические задачи на неравенство треугольника ]
[ Доказательство от противного ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 5-
Классы: 8,9,10

Автор: Серов М.

Пять отрезков таковы, что из любых трех из них можно составить треугольник. Докажите, что хотя бы один из этих треугольников остроугольный.
Прислать комментарий     Решение


Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 448]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .