Страница:
<< 131 132 133 134
135 136 137 >> [Всего задач: 2247]
|
|
Сложность: 4- Классы: 9,10,11
|
Дан описанный четырёхугольник $ABCD$ с тупым углом $ABC$. Лучи $AB$ и $DC$ пересекаются в точке $P$, а лучи $DA$ и $CB$ – в точке $Q$. Докажите, что $|AD - CD| \geq |r_1 - r_2|$, где $r_1$ и $r_2$ – радиусы вписанных окружностей треугольников $PBC$ и $QAB$.
В квадрате
ABCD на стороне
AB взята точка
P, на стороне
BC — точка
Q, на стороне
CD — точка
R, на стороне
DA —
S; оказалось, что
фигура
PQRS — прямоугольник. Доказать, что тогда прямоугольник
PQRS —
либо квадрат, либо обладает тем свойством, что его стороны параллельны
диагоналям квадрата.
В квадрат вписано 1993 различных правильных треугольника (треугольник
вписан, если три его вершины лежат на сторонах квадрата).
Докажите, что внутри квадрата можно указать точку, лежащую на границе не
менее чем 499 из этих треугольников.
|
|
Сложность: 4- Классы: 10,11
|
Внутренняя точка M выпуклого четырёхугольника ABCD такова, что треугольники AMB и CMD – равнобедренные с углом величиной 120° при вершине M.
Докажите существование такой точки N, что треугольники BNC и DNA – правильные.
|
|
Сложность: 4- Классы: 9,10,11
|
Пусть F1, F2, F3, ... – последовательность выпуклых четырёхугольников, где Fk+1 (при k = 1, 2, 3, ...) получается так: Fk разрезают по диагонали, одну из частей переворачивают и склеивают по линии разреза с другой частью. Какое наибольшее количество различных четырёхугольников может содержать эта последовательность? (Различными считаются многоугольники, которые нельзя совместить движением.)
Страница:
<< 131 132 133 134
135 136 137 >> [Всего задач: 2247]