Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 298]
|
|
Сложность: 4- Классы: 6,7,8
|
Поставьте на плоскости 9 точек так, чтобы никакие 4 не лежали
на одной прямой, но из любых шести нашлись 3, лежащие на одной
прямой. (На рисунке проведите все прямые, на которых лежат по
три отмеченные точки.)
Несколько (конечное число) точек плоскости окрашены в четыре цвета, причём есть точки каждого цвета. Никакие три из этих точек не лежат на одной прямой. Докажите, что найдутся три разных (возможно, пересекающихся) треугольника, каждый из которых имеет вершины трёх разных цветов и не содержит внутри себя окрашенных точек.
На столе лежат 9 яблок, образуя 10 рядов по 3 яблока в каждом (см. рис.).
Известно, что у девяти рядов веса одинаковы, а вес десятого ряда от них отличается. Есть электронные весы, на которых за рубль можно узнать вес любой группы яблок. Какое наименьшее число рублей надо заплатить, чтобы узнать, вес какого именно ряда отличается?
|
|
Сложность: 4- Классы: 8,9,10
|
В магазине в ряд висят 21 белая и 21 фиолетовая рубашка. Найдите такое минимальное k, что при любом изначальном порядке рубашек можно снять k белых и k фиолетовых рубашек так, чтобы оставшиеся белые рубашки висели подряд и оставшиеся фиолетовые рубашки тоже висели подряд.
|
|
Сложность: 4- Классы: 9,10,11
|
На прямой отмечено 100 точек, и ещё одна точка отмечена вне прямой. Рассмотрим все треугольники с вершинами в этих точках.
Какое наибольшее количество из них могут быть равнобедренными?
Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 298]