Страница:
<< 53 54 55 56
57 58 59 >> [Всего задач: 354]
|
|
Сложность: 4+ Классы: 9,10,11
|
Докажите, что если
α ,
β и
γ – углы остроугольного треугольника, то
sinα + sinβ + sinγ > 2
.
|
|
Сложность: 4+ Классы: 9,10,11
|
Дан набор из
n>2
векторов. Назовем вектор набора длинным, если его длина не меньше
длины суммы остальных векторов набора. Докажите, что если каждый вектор набора– длинный,
то сумма всех векторов набора равна нулю.
[Окружность Аполлония.]
|
|
Сложность: 5- Классы: 8,9
|
Найдите геометрическое место точек, расстояния от каждой из
которых до двух данных точек относятся как m : n.
а) Докажите, что ограниченная фигура не может иметь более одного
центра симметрии.
б) Докажите, что никакая фигура не может иметь ровно двух центров
симметрии.
в) Пусть
M — конечное множество точек на плоскости.
Точку
O назовем к почти центром симметриик множества
M,
если из
M можно выбросить одну точку так, что
O будет
центром симметрии оставшегося множества. Сколько к почти
центров симметриик может иметь
M?
|
|
Сложность: 5- Классы: 9,10,11
|
Дана полуокружность с диаметром
AB. Для каждой точки
X этой
полуокружности на луче
XA откладывается точка
Y так, что
XY =
kXB.
Найдите ГМТ
Y.
Страница:
<< 53 54 55 56
57 58 59 >> [Всего задач: 354]