Страница:
<< 56 57 58 59
60 61 62 >> [Всего задач: 354]
|
|
Сложность: 6- Классы: 9,10,11
|
На плоскости отмечены все точки с целыми координатами
(
x,y)
такие,
что
x2+y2
10
10
. Двое играют в игру (ходят по очереди).
Первым ходом первый игрок ставит фишку в какую-то отмеченную точку и
стирает ее. Затем каждым очередным ходом игрок переносит фишку в
какую-то другую отмеченную точку и стирает ее. При этом длины ходов
должны все время увеличиваться; кроме того, запрещено делать ход из
точки в симметричную ей относительно центра. Проигрывает тот, кто не может
сделать ход. Кто из играющих может обеспечить себе победу, как бы ни
играл его соперник?
|
|
Сложность: 7 Классы: 9,10,11
|
а) На плоскости лежит правильный восьмиугольник. Его разрешено "перекатывать" по плоскости, переворачивая (симметрично отражая) относительно любой стороны. Докажите, что для любого круга можно перекатить восьмиугольник в такое положение, что его центр окажется внутри круга.
б) Решите аналогичную задачу для правильного пятиугольника.
в) Для каких правильных n-угольников верно аналогичное утверждение?
Найдите косинус угла при основании равнобедренного треугольника, если точка пересечения его высот лежит на вписанной в треугольник окружности.
|
|
Сложность: 3 Классы: 7,8,9
|
Три кузнечика сидят на прямой так, что два крайних отстоят на 1 м от среднего. Каждую секунду один из кузнечиков прыгает через другого в симметричную точку
(если A прыгает через B в точку A1, то AB = BA1). Через некоторое время кузнечики оказались на тех же местах, что и вначале, но в другом порядке. Докажите, что поменялись местами крайние кузнечики.
|
|
Сложность: 3 Классы: 10,11
|
В прямоугольном параллелепипеде
ABCDA1B1C1D1 четыре числа
– длины рёбер и диагонали AC1 – образуют арифметическую прогрессию с
положительной разностью d, причём AA1 < AB < BC.
Две внешне касающиеся друг друга сферы одинакового неизвестного радиуса R расположены
так, что их центры лежат внутри параллелепипеда, причём первая сфера касается граней
ABB1A1, ADD1A1,
ABCD, а вторая – граней BCC1B1,
CDD1C1,
A1B1C1D1.
Найдите: а) длины рёбер параллелепипеда; б) угол между прямыми
CD1 и AC1; в) радиус R.
Страница:
<< 56 57 58 59
60 61 62 >> [Всего задач: 354]