Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 629]
По кругу посажены 19 кустов ландышей.
а) Докажите, что обязательно найдутся два соседних куста, общее количество колокольчиков на которых чётно.
б) Всегда ли можно найти два соседних куста, общее количество колокольчиков на которых кратно 3?
|
|
Сложность: 2+ Классы: 6,7,8
|
Есть три кучи камней. Разрешается к любой из них добавить столько камней,
сколько есть в двух других кучах, или из любой кучи выбросить столько камней,
сколько есть в двух других кучах. Например: (12, 3, 5) → (12, 20, 5) (или (4, 3, 5)). Можно ли, начав с куч 1993, 199 и 19, сделать одну из куч пустой?
Можно ли найти четыре целых числа, сумма и произведение которых являются нечётными числами?
Подпольный миллионер Тарас Артёмов пришёл в Госбанк, чтобы обменять несколько 50- и 100-рублёвых купюр старого образца. Ему была выдана 1991 купюра более мелкого достоинства, причём среди них не было 10-рублёвых. Докажите, что его обсчитали.
|
|
Сложность: 2+ Классы: 6,7,8
|
Петя сложил несколько чисел, среди которых было N чётных и M нечётных. Вы можете спросить у Пети про одно из чисел N или M, на ваш выбор, чётное ли оно. Достаточно ли этого, чтобы узнать, чётной или нечётной будет полученная Петей сумма?
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 629]