ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Точки M и N лежат на сторонах соответственно AD и BC ромба ABCD, причём DM : AM = BN : NC = 2 : 1. Найдите MN, если известно, что сторона ромба равна a, а $ \angle$BAD = 60o.

Вниз   Решение


Квадрат разбит на пять прямоугольников так, что четыре угла квадрата являются углами четырёх прямоугольников, площади которых равны между собой, а пятый прямоугольник не имеет общих точек со сторонами квадрата. Докажите, что этот пятый прямоугольник есть квадрат.

ВверхВниз   Решение


Пусть $I$ – центр сферы, вписанной в тетраэдр $ABCD$, а $J$ – центр сферы, касающейся грани $BCD$ и плоскостей остальных граней (вне самих граней). Отрезок $IJ$ пересекает сферу, описанную около тетраэдра, в точке $K$. Что больше: $IK$ или $JK$?

ВверхВниз   Решение


Квадрат ABCD и окружность пересекаются в восьми точках так, что образуются четыре криволинейных треугольника:  AEF, BGH, CIJ, DKL  (EF, GH, IJ, KL – дуги окружности). Докажите, что
  а) сумма длин дуг EF и IJ равна сумме длин дуг GH и KL;
  б) сумма периметров криволинейных треугольников AEF и CIJ равна сумме периметров криволинейных треугольников BGH и DKL.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 56]      



Задача 87108

Темы:   [ Неравенства с трехгранными углами ]
[ Неравенства с углами ]
Сложность: 4
Классы: 8,9

Докажите, что сумма двух плоских углов трёхгранного угла больше третьего.
Прислать комментарий     Решение


Задача 87274

Темы:   [ Касательные к сферам ]
[ Геометрические неравенства (прочее) ]
Сложность: 4
Классы: 8,9

Три параллельные прямые касаются в точках A , B и C сферы радиуса 4 с центром в точке O . Найдите угол BAC , если известно, что площадь треугольника OBC равна 4, а площадь треугольника ABC больше 16.
Прислать комментарий     Решение


Задача 87369

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Неравенства с объемами ]
Сложность: 4
Классы: 10,11

Найдите наибольшее значение объёма пирамиды SABC при следующих ограничениях

SA 4, SB 7, SC 9, AB = 5, BC 6, AC 8.

Прислать комментарий     Решение

Задача 108873

Темы:   [ Касательные к сферам ]
[ Геометрические неравенства (прочее) ]
Сложность: 4
Классы: 8,9

Сфера радиуса 4 с центром в точке Q касается трёх параллельных прямых в точках F , G и H . Известно, что площадь треугольника QGH равна 4 , а площадь треугольника FGH больше 16. Найдите угол GFH .
Прислать комментарий     Решение


Задача 109295

Темы:   [ Куб ]
[ Длины и периметры (геометрические неравенства) ]
Сложность: 4
Классы: 10,11

Через центр единичного куба проведена плоскость, не проходящая через ребро куба и делящая куб на два многогранника. Докажите, что в каждом из получившихся многогранников найдётся диагональ, длина которой не меньше .
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .