ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Боковое ребро правильной треугольной призмы ABCA1B1C1 равно стороне основания ABC . Плоскость P пересекает стороны основания AB и AC и боковые рёбра CC1 и BB1 в точках K , L , M и N соответственно. Площади фигур AKL , CLM и CMNB равны ![]() |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 993]
В равнобедренный треугольник ABC вписан ромб DECF так, что вершина E лежит на стороне BC, вершина F – на стороне AC и вершина D – на стороне AB. Найдите длину стороны ромба, если AB = BC = 12, AC = 6.
На каждой стороне ромба находится по одной вершине квадрата, стороны которого параллельны диагоналям ромба.
Из произвольной точки основания равнобедренного треугольника с боковой стороной, равной a, проведены прямые, параллельные боковым сторонам. Найдите периметр получившегося четырёхугольника.
Биссектриса угла параллелограмма делит сторону параллелограмма на отрезки, равные a и b. Найдите стороны параллелограмма.
Две равные окружности с центрами O1 и O2 пересекаются в точках A и B. Отрезок O1O2 пересекает эти окружности в точках M и N.
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 993] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |