Страница:
<< 157 158 159 160
161 162 163 >> [Всего задач: 2440]
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Решите уравнение x² – 5y² = 1 в целых числах.
[Индекс пересечения]
|
|
Сложность: 4+ Классы: 8,9,10
|
а) Докажите, что число точек пересечения двух замкнутых ломаных на плоскости, находящихся в общем положении, чётно.
б) Верно ли это для замкнутых ломаных, нарисованных на поверхности оконной рамы?
[Лемма Шпернера]
|
|
Сложность: 4+ Классы: 8,9
|
Вершины треугольника помечены цифрами 0, 1 и 2. Этот треугольник разбит на несколько треугольников таким образом, что никакая вершина одного треугольника не лежит на стороне другого. Вершинам исходного треугольника оставлены старые пометки, а дополнительные вершины получают номера 0, 1, 2, причём каждая вершина на стороне исходного треугольника должна быть помечена одной из пометок вершин этой стороны (см. рис.). Докажите, что существует треугольник разбиения,
помеченный цифрами 0, 1, 2.
|
|
Сложность: 4+ Классы: 9,10,11
|
Пусть натуральные числа $a$ и $b$ взаимно просты. Докажите, что для того, чтобы уравнение $ax + by = c$ имело ровно $n$ целых положительных решений, значение $c$ должно находиться в пределах $(n - 1) \cdot ab + a + b \leqslant c \leqslant (n + 1) \cdot ab.$
|
|
Сложность: 4+ Классы: 9,10,11
|
Отметим на прямой красным цветом все точки вида 81x + 100y, где x, y – натуральные, и синим цветом –
остальные целые точки.
Найдите на прямой такую точку, что любые симметричные относительно неё целые точки окрашены в разные цвета.
Страница:
<< 157 158 159 160
161 162 163 >> [Всего задач: 2440]