ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Имеется 13 гирь, каждая из которых весит целое число граммов. Известно, что любые 12 из них можно так разложить на две чашки весов, по шесть гирь на каждой, что наступит равновесие. Докажите, что все гири имеют один и тот же вес.

   Решение

Задачи

Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 598]      



Задача 109958

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Четность и нечетность ]
[ Перебор случаев ]
Сложность: 4-
Классы: 8,9,10

Существуют ли такие n-значные числа M и N, что все цифры M – чётные, все цифры N – нечётные, каждая цифра от 0 до 9 встречается в десятичной записи M или N хотя бы один раз и M делится на N?

Прислать комментарий     Решение

Задача 110017

Темы:   [ Десятичная система счисления ]
[ Ребусы ]
[ Арифметическая прогрессия ]
Сложность: 4-
Классы: 8,9

К натуральному числу A приписали справа три цифры. Получившееся число оказалось равным сумме всех натуральных чисел от 1 до A . Найдите A .
Прислать комментарий     Решение


Задача 110171

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 4-
Классы: 7,8,9

Набор пятизначных чисел $\{N_1, \dots, N_k\}$ таков, что любое пятизначное число, все цифры которого идут в возрастающем порядке, совпадает хотя бы в одном разряде хотя бы с одним из чисел $N_1, \dots, N_k$. Найдите наименьшее возможное значение $k$.
Прислать комментарий     Решение


Задача 115839

Темы:   [ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 7,8,9,10

Барон Мюнхгаузен говорит, что у него есть многозначное число-палиндром (оно читается одинаково слева направо и справа налево). Написав его на бумажной ленте, барон сделал несколько разрезов между цифрами и получил на кусочках ленты числа 1, 2, ..., N в некотором порядке (каждое – ровно по разу). Не хвастает ли барон?

Прислать комментарий     Решение

Задача 116395

Темы:   [ Десятичная система счисления ]
[ Процессы и операции ]
[ Арифметика остатков (прочее) ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 10,11

  Назовём натуральное число хорошим, если все его цифры ненулевые. Хорошее число назовём особым, если в нём хотя бы k разрядов и цифры идут в порядке строгого возрастания (слева направо).
  Пусть имеется некое хорошее число. За ход разрешается приписать с любого края или вписать между любыми его двумя цифрами особое число или же, наоборот, стереть в его записи особое число. При каком наибольшем k можно из каждого хорошего числа получить любое другое хорошее число с помощью таких ходов?

Прислать комментарий     Решение

Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 598]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .