Страница:
<< 4 5 6 7 8
9 10 >> [Всего задач: 50]
|
|
Сложность: 4 Классы: 7,8,9
|
11 пионеров занимаются в пяти кружках дома культуры.
Докажите, что найдутся два пионера А и В такие, что все кружки,
которые посещает А, посещает и В.
|
|
Сложность: 4 Классы: 8,9,10
|
В стране Нашии есть военные базы, соединённые дорогами. Набор дорог называется
важным, если после закрытия этих дорог найдутся две базы, не соединённые путем. Важный набор называется стратегическим, если он не содержит
меньшего важного набора. Докажите, что множество дорог, каждая из которых
принадлежит ровно одному из двух различных стратегических наборов, образует
важный набор.
|
|
Сложность: 4+ Классы: 8,9,10
|
Найти наименьшее
n такое, что любой выпуклый 100-угольник можно получить в
виде пересечения
n треугольников. Докажите, что для меньших
n это можно
сделать не с любым выпуклым 100-угольником.
|
|
Сложность: 4+ Классы: 8,9,10
|
На прямой выбрано 100 множеств
A1, A2, .. , A100
, каждое из которых является объединением 100
попарно непересекающихся отрезков.
Докажите, что пересечение множеств
A1, A2, .. , A100
является объединением не более 9901 попарно непересекающихся отрезков
(точка также считается отрезком).
Двенадцать малышей вышли во двор играть в песочнице. Каждый, кто принёс ведёрко, принёс и совочек. Забыли дома ведёрко девять малышей, забыли дома совочек двое. На сколько меньше малышей, которые принесли ведёрко, чем тех, которые принесли совочек, но забыли ведёрко?
Страница:
<< 4 5 6 7 8
9 10 >> [Всего задач: 50]