Страница:
<< 19 20 21 22 23 24 25 >> [Всего задач: 629]
|
|
Сложность: 3+ Классы: 6,7,8
|
В таблице 25×25 расставлены целые числа так, что в каждом столбце и в каждой строчке встречаются все числа от 1 до 25. При этом таблица симметрична относительно главной диагонали. Доказать, что на главной диагонали все числа от 1 до 25 встречаются по одному разу.
|
|
Сложность: 3+ Классы: 6,7,8
|
В квадрате 25×25 стоят числа 1 и –1. Вычислили все произведения этих чисел по строкам и по столбцам.
Доказать, что сумма этих произведений не равна нулю.
|
|
Сложность: 3+ Классы: 6,7,8
|
По кругу расставлены нули и единицы (и те и другие присутствуют). Каждое число,
у которого два соседа одинаковы, заменяют на ноль, а остальные числа – на единицы, и такую операцию проделывают несколько раз.
a) Могут ли все числа стать нулями, если их 13 штук?
б) Могут ли все числа стать единицами, если их 14 штук?
|
|
Сложность: 3+ Классы: 7,8,9
|
На каждой клетке шахматной доски стоит шашка, с одной стороны белая, с другой черная. За один ход можно выбрать любую шашку и перевернуть все шашки, стоящие с выбранной на одной вертикали, и все шашки, стоящие с ней на одной горизонтали.
а) Придумайте, как перевернуть ровно одну шашку на доске 6×6, произвольно уставленной шашками.
б) Можно ли добиться того, чтобы все шашки на доске 5×6 стали белыми, если чёрными изначально была ровно половина шашек.
|
|
Сложность: 3+ Классы: 6,7,8
|
На доске написаны числа
а) 1, 2. 3, ..., 1997, 1998;
б) 1, 2, 3, ..., 1998, 1999;
в) 1, 2, 3, ..., 1999, 2000.
Разрешается стереть с доски любые два числа, заменив их разностью большего и меньшего. Можно ли, выполнив эту операцию много раз. получить на доске единственное число – 0? Если да, то как это сделать?
Страница:
<< 19 20 21 22 23 24 25 >> [Всего задач: 629]