Страница:
<< 66 67 68 69
70 71 72 >> [Всего задач: 507]
Шестиугольник ABCDEF – правильный, K и M – середины отрезков BD и EF. Докажите, что треугольник AMK – правильный.
|
|
Сложность: 3 Классы: 8,9,10
|
Дан выпуклый пятиугольник. Петя выписал в тетрадь значения синусов всех его углов, а Вася – значения косинусов всех его углов. Оказалось, что среди выписанных Петей чисел нет четырёх различных. Могут ли все числа, выписанные Васей, оказаться различными?
|
|
Сложность: 3 Классы: 8,9,10,11
|
Дана равнобокая трапеция $ABCD$ ($AB=CD$). На описанной около неё окружности выбирается точка $P$ так, что отрезок $CP$ пересекает основание $AD$ в точке $Q$. Пусть $L$ – середина $QD$. Докажите, что длина диагонали трапеции не превосходит суммы расстояний от середин её боковых сторон до любой точки прямой $PL$.
|
|
Сложность: 3+ Классы: 7,8,9
|
Внутри выпуклого пятиугольника расположены две точки.
Докажите, что можно выбрать четырехугольник с
вершинами в вершинах пятиугольника так,
что в него попадут обе выбранные точки.
В шестиугольнике, описанном около окружности, даны пять
последовательных сторон — a, b, c, d, e. Найдите
шестую сторону.
Страница:
<< 66 67 68 69
70 71 72 >> [Всего задач: 507]