ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 1547]      



Задача 116585

Темы:   [ Свойства симметрий и осей симметрии ]
[ Вписанные и описанные окружности ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Вписанный угол, опирающийся на диаметр ]
[ Векторы помогают решить задачу ]
Сложность: 3+
Классы: 8,9,10

На стороне AC треугольника ABC отметили произвольную точку D. Точки E и F симметричны точке D относительно биссектрис углов A и C соответственно. Докажите, что середина отрезка EF лежит на прямой A0C0, где A0 и C0 – точки касания вписанной окружности треугольника ABC со сторонами BC и AB соответственно.

Прислать комментарий     Решение

Задача 54176

Темы:   [ Проекция на прямую ]
[ Средняя линия трапеции ]
Сложность: 3+
Классы: 8,9

Точка M — середина отрезка AB. Точки A1, M1 и B1 — проекции точек соответственно A, M и B на некоторую прямую. Докажите, что M1 — середина отрезка A1B1.

Прислать комментарий     Решение


Задача 55712

Тема:   [ Центральная симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки проведите через общую точку A окружностей S1 и S2 прямую так, чтобы эти окружности высекали на ней равные хорды.

Прислать комментарий     Решение


Задача 35400

Тема:   [ Гомотетичные окружности ]
Сложность: 3+
Классы: 10,11

Внутри угла расположены две окружности с центрами A, B, которые касаются друг друга и сторон угла. Докажите, что окружность с диаметром AB касается сторон угла.
Прислать комментарий     Решение


Задача 55615

Темы:   [ Симметрия помогает решить задачу ]
[ Экстремальные свойства. Задачи на максимум и минимум. ]
Сложность: 3+
Классы: 8,9

Берег реки — прямая линия. Отгородите от него прямоугольным забором общей длины p участок наибольшей площади.

Прислать комментарий     Решение


Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 1547]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .