ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 275]      



Задача 52474

Темы:   [ Угол между касательной и хордой ]
[ Признаки и свойства параллелограмма ]
Сложность: 4+
Классы: 8,9

В параллелограмме ABCD диагональ AC больше диагонали BD. Точка M на диагонали AC такова, что около четырёхугольника BCDM можно описать окружность. Докажите, что BD — общая касательная окружностей, описанных около треугольников ABM и ADM.

Прислать комментарий     Решение


Задача 52502

Темы:   [ Угол между касательной и хордой ]
[ Проекции оснований, сторон или вершин трапеции ]
Сложность: 4+
Классы: 8,9

Из точки вне окружности проведены касательные и секущая, причём точки касания и точки пересечения секущей с окружностью являются вершинами некоторой трапеции. Найдите отношение оснований трапеции, если известно, что угол между касательными равен 60o.

Прислать комментарий     Решение


Задача 55479

Темы:   [ Угол между касательной и хордой ]
[ Признаки и свойства касательной ]
Сложность: 4+
Классы: 8,9

Прямые PC и PD касаются окружности с диаметром AB (C и D — точки касания). Докажите, что прямая, соединяющая точку P с точкой пересечения прямых AC и BD, перпендикулярна AB.

Прислать комментарий     Решение


Задача 108220

Темы:   [ Угол между касательной и хордой ]
[ Вспомогательная окружность ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4+
Классы: 8,9

Окружность, вписанная в угол с вершиной O касается его сторон в точках A и B , K – произвольная точка на меньшей из двух дуг AB этой окружности. На прямой OB взята точка L такая, что прямые OA и KL параллельны. Пусть M – точка пересечения окружности , описанной около треугольника KLB , с прямой AK , отличная от K . Докажите, что прямая OM касается окружности .
Прислать комментарий     Решение


Задача 53127

Темы:   [ Угол между касательной и хордой ]
[ Теорема косинусов ]
[ Теорема синусов ]
[ Неравенство треугольника (прочее) ]
[ Средняя линия треугольника ]
Сложность: 5
Классы: 8,9

Около треугольника ABC описана окружность с центром в точке O. Касательная к окружности в точке C пересекается с прямой, делящей пополам угол B треугольника, в точке K, причём угол BKC равен половине разности утроенного угла A и угла C треугольника. Сумма сторон AC и AB равна 2 + $ \sqrt{3}$, а сумма расстояний от точки O до сторон AC и AB равна 2. Найдите радиус окружности.

Прислать комментарий     Решение


Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .