ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Сколько осей симметрии может иметь клетчатый многоугольник, то есть многоугольник, стороны которого лежат на линиях листа бумаги в клетку? б) Сколько осей симметрии может иметь клетчатый многогранник, то есть многогранник, составленный из одинаковых кубиков, примыкающих друг к другу гранями? ![]() ![]() Основание пирамиды – параллелограмм со сторонами 10 и 18, и площадью 90. Высота пирамиды проходит через точку пересечения диагоналей основания и равна 6. Найдите боковую поверхность пирамиды. ![]() ![]() |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 499]
В окружность вписан четырёхугольник ABCD. На дуге AD, не
содержащей вершин B и C, взята точка K. Точки P, Q, M и N являются основаниями перпендикуляров, опущенных из точки K
соответственно на стороны AD, BC, AB и CD (или на продолжения
этих сторон). Известно, что KP = d, а
Четырёхугольник ABCD вписан в окружность радиуса R. Его диагонали взаимно перпендикулярны и пересекаются в точке P.
В окружность радиуса 17 вписан четырёхугольник, диагонали которого взаимно перпендикулярны и находятся на расстоянии 8 и 9 от центра окружности. Найдите стороны четырёхугольника.
В окружность радиуса 10 вписан четырёхугольник, диагонали которого перпендикулярны и равны 12 и 10
В окружность радиуса 13 вписан четырёхугольник, диагонали которого взаимно перпендикулярны. Одна из диагоналей равна 18, а расстояние от центра окружности до точки пересечения диагоналей равно 4
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 499] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |