ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 501]      



Задача 116920

Темы:   [ Разрезания (прочее) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3-
Классы: 8,9

Автор: Фольклор

На клетчатой бумаге нарисован квадрат 7×7. Покажите, как разрезать его по линиям сетки на шесть частей и сложить из них три квадрата.

Прислать комментарий     Решение

Задача 53655

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Ромбы. Признаки и свойства ]
Сложность: 3
Классы: 8,9

В окружность вписан прямоугольник. Середины сторон последовательно соединены отрезками. Докажите, что периметр образовавшегося четырёхугольника равен удвоенному диаметру данной окружности.

Прислать комментарий     Решение


Задача 53923

Темы:   [ Диаметр, хорды и секущие ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9

Прислать комментарий     Решение


Задача 35686

Темы:   [ Теория игр (прочее) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9

В центре квадрата сидит волк, а в вершинах - сидят собаки. Волк может бегать по внутренности квадрата с максимальной скоростью $v$, а собаки - только по сторонам квадрата с максимальной скоростью $1,5v$. Известно, что волк задирает собаку, а две собаки задирают волка. Всегда ли волк сможет выбежать из квадрата?
Прислать комментарий     Решение


Задача 52929

Темы:   [ Две касательные, проведенные из одной точки ]
[ Ромбы. Признаки и свойства ]
[ Отношения площадей подобных фигур ]
Сложность: 3
Классы: 8,9

Площадь ромба ABCD равна 2. В треугольник ABD вписана окружность, которая касается стороны AB в точке K. Через точку K проведена прямая KL, параллельная диагонали AC ромба (точка L лежит на стороне BC). Найдите угол BAD, если известно, что площадь треугольника KLB равна a.

Прислать комментарий     Решение

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .