Страница:
<< 48 49 50 51
52 53 54 >> [Всего задач: 501]
В ромбе ABCD угол при вершине A равен 60°. Точка N
делит сторону AB в отношении AN : BN = 2 : 1. Найдите тангенс угла DNC.
В окружность вписан прямоугольник
ABCD , сторона
AB которого
равна
a . Из конца
K диаметра
KP , параллельного стороне
AB ,
сторона
BC видна под углом
β . Найдите радиус окружности.
Через точку O пересечения биссектрис треугольника ABC
проведены прямые, параллельные его сторонам. Прямая, параллельная AB,
пересекает AC и BC в точках M и N, а прямые, параллельные AC и BC, пересекают AB в точках P и Q. Докажите, что MN = AM + BN и периметр треугольника OPQ равен длине отрезка AB.
В параллелограмме ABCD из вершины тупого угла B проведены высоты
BM и BN, а из вершины D – высоты DP и DQ.
Докажите, что точки M, N, P и Q являются вершинами прямоугольника.
|
|
Сложность: 3 Классы: 6,7,8,9
|
Пит М. на квадратном холсте нарисовал композицию из прямоугольников. На рисунке даны площади нескольких прямоугольников, в том числе синего и красного квадратов. Чему равна сумма площадей двух серых прямоугольников?
Страница:
<< 48 49 50 51
52 53 54 >> [Всего задач: 501]