ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Натуральные числа покрашены в N цветов. Чисел каждого цвета бесконечно много. Известно, что цвет полусуммы двух различных чисел одной чётности зависит только от цветов слагаемых.
  а) Докажите, что полусумма чисел одной чётности одного цвета всегда окрашена в тот же цвет.
  б) При каких N такая раскраска возможна?

   Решение

Задачи

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 501]      



Задача 53347

Темы:   [ Признаки и свойства параллелограмма ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Поворот помогает решить задачу ]
Сложность: 3
Классы: 8,9

На сторонах параллелограмма вне его построены квадраты. Докажите, что их центры также образуют квадрат.

Прислать комментарий     Решение

Задача 53461

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8,9

На стороне AB квадрата ABCD построен равносторонний треугольник ABM. Найдите угол DMC.

Прислать комментарий     Решение

Задача 53757

Темы:   [ Отношения линейных элементов подобных треугольников ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9

В треугольник, основание которого равно 48, а высота – 16, вписан прямоугольник с отношением сторон  5 : 9,  причём большая сторона лежит на основании треугольника. Найдите стороны прямоугольника.

Прислать комментарий     Решение

Задача 53758

Темы:   [ Отношения линейных элементов подобных треугольников ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9

В треугольник, у которого основание равно 30, а высота – 10, вписан прямоугольный равнобедренный треугольник так, что его гипотенуза параллельна основанию данного треугольника, а вершина прямого угла лежит на этом основании. Найдите гипотенузу.

Прислать комментарий     Решение

Задача 54138

Темы:   [ Средняя линия треугольника ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9


В выпуклом четырёхугольнике ABCD отрезок, соединяющий середины диагоналей, равен отрезку, соединяющему середины сторон AD и BC . Найдите угол, образованный продолжением сторон AB и CD .
Прислать комментарий     Решение


Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .