Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 148]
В выпуклом четырёхугольнике ABCD точка E – пересечение
диагоналей. Известно, что площадь каждого из треугольников ABE и
DCE равна 7, а площадь всего четырёхугольника не превосходит 28;
AD =
. Найдите сторону BC.
|
|
Сложность: 3+ Классы: 10,11
|
Пусть A', B', C', D', E', F' – середины сторон AB, BC, CD, DE, EF, FA произвольного выпуклого шестиугольника ABCDEF. Известны площади треугольников ABC', BCD', CDE', DEF', EFA', FAB'. Найдите площадь шестиугольника ABCDEF.
В выпуклом пятиугольнике ABCDE диагонали BE и CE являются
биссектрисами углов при вершинах B и C соответственно, ∠A = 35°, ∠D = 145°, а площадь треугольника BCE равна 11. Найдите площадь пятиугольника ABCDE.
В выпуклом пятиугольнике ABCDE диагонали AC и AD являются
биссектрисами углов при вершинах C и D соответственно, ∠B = 25°, ∠E = 155°, а площадь пятиугольника ABCDE равна 12. Найдите площадь треугольника ACD.
В выпуклом пятиугольнике ABCDE диагонали AD и BD являются
биссектрисами углов при вершинах A и B соответственно, ∠C = 115°, ∠E = 65°, а площадь треугольника ABD равна 13. Найдите площадь пятиугольника ABCDE.
Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 148]