Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 158]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Замкнутая, возможно, самопересекающаяся ломаная симметрична относительно не лежащей на ней точки $O$. Докажите, что число оборотов ломаной вокруг $O$ нечётно. (
Числом оборотов вокруг $O$ называется сумма ориентированных углов $$\angle A_1OA_2+\angle A_2OA_3+\ldots+\angle A_{n-1}OA_n+\angle A_nOA_1,$$ делённая на $2\pi$.)
С помощью циркуля и линейки проведите через общую точку A
окружностей S1 и S2 прямую так, чтобы эти окружности высекали на
ней равные хорды.
Точка
O — центр круга, описанного около треугольника
ABC. Точки
A1,
B1 и
C1 симметричны точке
O относительно сторон треугольника
ABC.
Докажите, что все высоты треугольника
A1B1C1 проходят через точку
O,
а все высоты треугольника
ABC проходят через центр круга, описанного около
треугольника
A1B1C1.
Пусть
P - середина стороны
AB выпуклого четырехугольника
ABCD. Докажите, что если площадь треугольника
PDC равна половине
площади четырехугольника
ABCD, то стороны
BC и
AD параллельны.
Фигура имеет две перпендикулярные оси симметрии. Верно ли,
что она имеет центр симметрии?
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 158]