Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 1547]
Треугольники ABC и ABD равны, причём точки C и D не
совпадают. Докажите, что прямая CD перпендикулярна прямой AB.
Выпуклый многоугольник имеет центр симметрии. Докажите, что сумма его углов делится на 360°.
Дан угол
ABC и прямая
l . Параллельно прямой
l с помощью
циркуля и линейки проведите прямую, на которой стороны угла
ABC
высекают отрезок, равный данному.
Пусть две прямые пересекаются под углом α. Докажите, что при повороте на угол α (в одном из направлений) относительно произвольной точки одна из этих прямых перейдёт в прямую, параллельную другой.
Докажите, что при повороте окружность переходит в окружность.
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 1547]