ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 93 94 95 96 97 98 99 >> [Всего задач: 501]      



Задача 58101

Темы:   [ Принцип Дирихле (площадь и объем) ]
[ Площадь круга, сектора и сегмента ]
[ Площади криволинейных фигур ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4
Классы: 9,10

В квадрате со стороной 15 расположено 20 попарно непересекающихся квадратиков со стороной 1. Докажите, что в большом квадрате можно разместить круг радиуса 1 так, чтобы он не пересекался ни с одним из квадратиков.
Прислать комментарий     Решение


Задача 58169

Темы:   [ Разбиения на пары и группы; биекции ]
[ Поворот помогает решить задачу ]
[ Разрезания на параллелограммы ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4
Классы: 8,9,10

Квадратный лист клетчатой бумаги разбит на меньшие квадраты отрезками, идущими по сторонам клеток.
Докажите, что сумма длин этих отрезков делится на 4. (Длина стороны клетки равна 1.)

Прислать комментарий     Решение

Задача 66236

Темы:   [ Треугольник (построения) ]
[ Отношение, в котором биссектриса делит сторону ]
[ Симметрия помогает решить задачу ]
[ Ромбы. Признаки и свойства ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 4
Классы: 9,10

Дан остроугольный треугольник ABC. Постройте на сторонах BC, CA, AB точки A', B', C' так, чтобы выполнялись следующие условия:
  - A'B' || AB;
  - C'C – биссектриса угла A'C'B';
  - A'C' + B'C' = AB.

Прислать комментарий     Решение

Задача 86109

Темы:   [ Разные задачи на разрезания ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Примеры и контрпримеры. Конструкции ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4
Классы: 8,9,10

Верно ли, что любой треугольник можно разрезать на 1000 частей, из которых можно сложить квадрат?
Прислать комментарий     Решение


Задача 55753

Темы:   [ Поворот на $90^\circ$ ]
[ Теорема Пифагора (прямая и обратная) ]
[ Поворот помогает решить задачу ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4+
Классы: 8,9

Точка P расположена внутри квадрата ABCD, причём AP : BP : CP = 1 : 2 : 3. Найдите угол APB.

Прислать комментарий     Решение


Страница: << 93 94 95 96 97 98 99 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .