Страница:
<< 1 2 3 4 5 6 [Всего задач: 28]
С помощью циркуля и линейки постройте окружность, касающуюся
двух данных концентрических окружностей и данной прямой.
|
|
Сложность: 3+ Классы: 7,8,9
|
Пусть O – центр описанной окружности остроугольного треугольника ABC, SA, SB, SC – окружности с
центром O, касающиеся сторон BC, CA и AB соответственно.
Докажите, что сумма трёх углов: между касательными к SA,
проведёнными из точки A, к SB – из точки B, и к SC – из точки C, равна 180°.
|
|
Сложность: 7+ Классы: 9,10,11
|
Докажите, что для двух непересекающихся окружностей
R1 и
R2
цепочка из
n касающихся окружностей (см. предыдущую задачу)
существует тогда и только тогда, когда угол между окружностями
T1
и
T2, касающимися
R1 и
R2 в точках их пересечения с прямой,
соединяющей центры, равен целому кратному угла
360
o/
n (рис.).
Страница:
<< 1 2 3 4 5 6 [Всего задач: 28]